Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Efficient Approach to Encoding Context for Spoken Language Understanding (1807.00267v1)

Published 1 Jul 2018 in cs.CL

Abstract: In task-oriented dialogue systems, spoken language understanding, or SLU, refers to the task of parsing natural language user utterances into semantic frames. Making use of context from prior dialogue history holds the key to more effective SLU. State of the art approaches to SLU use memory networks to encode context by processing multiple utterances from the dialogue at each turn, resulting in significant trade-offs between accuracy and computational efficiency. On the other hand, downstream components like the dialogue state tracker (DST) already keep track of the dialogue state, which can serve as a summary of the dialogue history. In this work, we propose an efficient approach to encoding context from prior utterances for SLU. More specifically, our architecture includes a separate recurrent neural network (RNN) based encoding module that accumulates dialogue context to guide the frame parsing sub-tasks and can be shared between SLU and DST. In our experiments, we demonstrate the effectiveness of our approach on dialogues from two domains.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Raghav Gupta (24 papers)
  2. Abhinav Rastogi (29 papers)
  3. Dilek Hakkani-Tur (94 papers)
Citations (21)