Papers
Topics
Authors
Recent
Search
2000 character limit reached

Machine Learning the period finding algorithm

Published 9 Mar 2021 in quant-ph and cs.LG | (2103.05708v1)

Abstract: We use differentiable programming and gradient descent to find unitary matrices that can be used in the period finding algorithm to extract period information from the state of a quantum computer post application of the oracle. The standard procedure is to use the inverse quantum Fourier transform. Our findings suggest that that this is not the only unitary matrix appropriate for the period finding algorithm, There exist several unitary matrices that can affect out the same transformation and they are significantly different from each other as well. These unitary matrices can be learned by an algorithm. Neural networks can be applied to differentiate such unitary matrices from randomly generated ones indicating that these unitaries do have characteristic features that cannot otherwise be discerned easily.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.