Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Loosely Synchronized Search for Multi-agent Path Finding with Asynchronous Actions (2103.04516v2)

Published 8 Mar 2021 in cs.RO and cs.AI

Abstract: Multi-agent path finding (MAPF) determines an ensemble of collision-free paths for multiple agents between their respective start and goal locations. Among the available MAPF planners for workspace modeled as a graph, A*-based approaches have been widely investigated due to their guarantees on completeness and solution optimality, and have demonstrated their efficiency in many scenarios. However, almost all of these A*-based methods assume that each agent executes an action concurrently in that all agents start and stop together. This article presents a natural generalization of MAPF with asynchronous actions (MAPF-AA) where agents do not necessarily start and stop concurrently. The main contribution of the work is a proposed approach called Loosely Synchronized Search (LSS) that extends A*-based MAPF planners to handle asynchronous actions. We show LSS is complete and finds an optimal solution if one exists. We also combine LSS with other existing MAPF methods that aims to trade-off optimality for computational efficiency. Numerical results are presented to corroborate the performance of LSS and the applicability of the proposed method is verified in the Robotarium, a remotely accessible swarm robotics research platform.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhongqiang Ren (28 papers)
  2. Sivakumar Rathinam (52 papers)
  3. Howie Choset (92 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com