Papers
Topics
Authors
Recent
2000 character limit reached

CORe: Capitalizing On Rewards in Bandit Exploration

Published 7 Mar 2021 in cs.LG and stat.ML | (2103.04387v1)

Abstract: We propose a bandit algorithm that explores purely by randomizing its past observations. In particular, the sufficient optimism in the mean reward estimates is achieved by exploiting the variance in the past observed rewards. We name the algorithm Capitalizing On Rewards (CORe). The algorithm is general and can be easily applied to different bandit settings. The main benefit of CORe is that its exploration is fully data-dependent. It does not rely on any external noise and adapts to different problems without parameter tuning. We derive a $\tilde O(d\sqrt{n\log K})$ gap-free bound on the $n$-round regret of CORe in a stochastic linear bandit, where $d$ is the number of features and $K$ is the number of arms. Extensive empirical evaluation on multiple synthetic and real-world problems demonstrates the effectiveness of CORe.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.