Papers
Topics
Authors
Recent
2000 character limit reached

Uncertainty Principles in Krein Space

Published 7 Mar 2021 in quant-ph, math-ph, math.FA, and math.MP | (2103.04372v1)

Abstract: Uncertainty relations between two general non-commuting self-adjoint operators are derived in a Krein space. All of these relations involve a Krein space induced fundamental symmetry operator, $J$, while some of these generalized relations involve an anti-commutator, a commutator, and various other nonlinear functions of the two operators in question. As a consequence there exist classes of non-self-adjoint operators on Hilbert spaces such that the non-vanishing of their commutator implies an uncertainty relation. All relations include the classical Heisenberg uncertainty principle as formulated in Hilbert Space by Von Neumann and others. In addition, we derive an operator dependent (nonlinear) commutator uncertainty relation in Krein space.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.