Papers
Topics
Authors
Recent
2000 character limit reached

MTLHealth: A Deep Learning System for Detecting Disturbing Content in Student Essays (2103.04290v2)

Published 7 Mar 2021 in cs.CL

Abstract: Essay submissions to standardized tests like the ACT occasionally include references to bullying, self-harm, violence, and other forms of disturbing content. Graders must take great care to identify cases like these and decide whether to alert authorities on behalf of students who may be in danger. There is a growing need for robust computer systems to support human decision-makers by automatically flagging potential instances of disturbing content. This paper describes MTLHealth, a disturbing content detection pipeline built around recent advances from computational linguistics, particularly pre-trained LLM Transformer networks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.