Papers
Topics
Authors
Recent
2000 character limit reached

Simplicial Complex Representation Learning

Published 6 Mar 2021 in cs.LG, cs.CG, cs.CV, math.AT, and stat.ML | (2103.04046v6)

Abstract: Simplicial complexes form an important class of topological spaces that are frequently used in many application areas such as computer-aided design, computer graphics, and simulation. Representation learning on graphs, which are just 1-d simplicial complexes, has witnessed a great attention in recent years. However, there has not been enough effort to extend representation learning to higher dimensional simplicial objects due to the additional complexity these objects hold, especially when it comes to entire-simplicial complex representation learning. In this work, we propose a method for simplicial complex-level representation learning that embeds a simplicial complex to a universal embedding space in a way that complex-to-complex proximity is preserved. Our method uses our novel geometric message passing schemes to learn an entire simplicial complex representation in an end-to-end fashion. We demonstrate the proposed model on publicly available mesh dataset. To the best of our knowledge, this work presents the first method for learning simplicial complex-level representation.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.