Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Proactive and AoI-aware Failure Recovery for Stateful NFV-enabled Zero-Touch 6G Networks: Model-Free DRL Approach (2103.03817v4)

Published 2 Feb 2021 in eess.SP and cs.LG

Abstract: In this paper, we propose a Zero-Touch, deep reinforcement learning (DRL)-based Proactive Failure Recovery framework called ZT-PFR for stateful network function virtualization (NFV)-enabled networks. To this end, we formulate a resource-efficient optimization problem minimizing the network cost function including resource cost and wrong decision penalty. As a solution, we propose state-of-the-art DRL-based methods such as soft-actor-critic (SAC) and proximal-policy-optimization (PPO). In addition, to train and test our DRL agents, we propose a novel impending-failure model. Moreover, to keep network status information at an acceptable freshness level for appropriate decision-making, we apply the concept of age of information to strike a balance between the event and scheduling based monitoring. Several key systems and DRL algorithm design insights for ZT-PFR are drawn from our analysis and simulation results. For example, we use a hybrid neural network, consisting long short-term memory layers in the DRL agents structure, to capture impending-failures time dependency.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube