Dual Pointer Network for Fast Extraction of Multiple Relations in a Sentence
Abstract: Relation extraction is a type of information extraction task that recognizes semantic relationships between entities in a sentence. Many previous studies have focused on extracting only one semantic relation between two entities in a single sentence. However, multiple entities in a sentence are associated through various relations. To address this issue, we propose a relation extraction model based on a dual pointer network with a multi-head attention mechanism. The proposed model finds n-to-1 subject-object relations using a forward object decoder. Then, it finds 1-to-n subject-object relations using a backward subject decoder. Our experiments confirmed that the proposed model outperformed previous models, with an F1-score of 80.8% for the ACE-2005 corpus and an F1-score of 78.3% for the NYT corpus.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.