Papers
Topics
Authors
Recent
Search
2000 character limit reached

Do biological constraints impair dendritic computation?

Published 4 Mar 2021 in q-bio.NC | (2103.03274v2)

Abstract: Computations on the dendritic trees of neurons have important constraints. Voltage dependent conductances in dendrites are not similar to arbitrary direct-current generation, they are the basis for dendritic nonlinearities and they do not allow converting positive currents into negative currents. While it has been speculated that the dendritic tree of a neuron can be seen as a multi-layer neural network and it has been shown that such an architecture could be computationally strong, we do not know if that computational strength is preserved under these biological constraints. Here we simulate models of dendritic computation with and without these constraints. We find that dendritic model performance on interesting machine learning tasks is not hurt by these constraints but may benefit from them. Our results suggest that single real dendritic trees may be able to learn a surprisingly broad range of tasks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.