Papers
Topics
Authors
Recent
2000 character limit reached

Bad and good errors: value-weighted skill scores in deep ensemble learning

Published 4 Mar 2021 in cs.LG, cs.AI, and cs.NE | (2103.02881v1)

Abstract: In this paper we propose a novel approach to realize forecast verification. Specifically, we introduce a strategy for assessing the severity of forecast errors based on the evidence that, on the one hand, a false alarm just anticipating an occurring event is better than one in the middle of consecutive non-occurring events, and that, on the other hand, a miss of an isolated event has a worse impact than a miss of a single event, which is part of several consecutive occurrences. Relying on this idea, we introduce a novel definition of confusion matrix and skill scores giving greater importance to the value of the prediction rather than to its quality. Then, we introduce a deep ensemble learning procedure for binary classification, in which the probabilistic outcomes of a neural network are clustered via optimization of these value-weighted skill scores. We finally show the performances of this approach in the case of three applications concerned with pollution, space weather and stock prize forecasting.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.