Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recurrent Graph Neural Network Algorithm for Unsupervised Network Community Detection (2103.02520v1)

Published 3 Mar 2021 in cs.SI, cs.LG, and physics.soc-ph

Abstract: Network community detection often relies on optimizing partition quality functions, like modularity. This optimization appears to be a complex problem traditionally relying on discrete heuristics. And although the problem could be reformulated as continuous optimization, direct application of the standard optimization methods has limited efficiency in overcoming the numerous local extrema. However, the rise of deep learning and its applications to graphs offers new opportunities. And while graph neural networks have been used for supervised and unsupervised learning on networks, their application to modularity optimization has not been explored yet. This paper proposes a new variant of the recurrent graph neural network algorithm for unsupervised network community detection through modularity optimization. The new algorithm's performance is compared against a popular and fast Louvain method and a more efficient but slower Combo algorithm recently proposed by the author. The approach also serves as a proof-of-concept for the broader application of recurrent graph neural networks to unsupervised network optimization.

Citations (1)

Summary

We haven't generated a summary for this paper yet.