Detecting Outliers in High-dimensional Data with Mixed Variable Types using Conditional Gaussian Regression Models
Abstract: Outlier detection has gained increasing interest in recent years, due to newly emerging technologies and the huge amount of high-dimensional data that are now available. Outlier detection can help practitioners to identify unwanted noise and/or locate interesting abnormal observations. To address this, we developed a novel method for outlier detection for use in, possibly high-dimensional, datasets with both discrete and continuous variables. We exploit the family of decomposable graphical models in order to model the relationship between the variables and use this to form an exact likelihood ratio test for an observation that is considered an outlier. We show that our method outperforms the state-of-the-art Isolation Forest algorithm on a real data example.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.