Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Outliers in High-dimensional Data with Mixed Variable Types using Conditional Gaussian Regression Models (2103.02366v3)

Published 3 Mar 2021 in math.ST, stat.CO, and stat.TH

Abstract: Outlier detection has gained increasing interest in recent years, due to newly emerging technologies and the huge amount of high-dimensional data that are now available. Outlier detection can help practitioners to identify unwanted noise and/or locate interesting abnormal observations. To address this, we developed a novel method for outlier detection for use in, possibly high-dimensional, datasets with both discrete and continuous variables. We exploit the family of decomposable graphical models in order to model the relationship between the variables and use this to form an exact likelihood ratio test for an observation that is considered an outlier. We show that our method outperforms the state-of-the-art Isolation Forest algorithm on a real data example.

Summary

We haven't generated a summary for this paper yet.