Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Asymptotic Estimation for Eigenvalues in the Exponential Potential and for Zeros of $K_{{\rm i}ν}(z)$ with Respect to Order (2103.01732v2)

Published 2 Mar 2021 in math-ph and math.MP

Abstract: The paper presents the derivation of the asymptotic behavior of $\nu$-zeros of the modified Bessel function of imaginary order $K_{{\rm i}\nu}(z)$. This derivation is based on the quasiclassical treatment of the exponential potential on the positive half axis. The asymptotic expression for the $\nu$-zeros (zeros with respect to order) contains the Lambert $W$ function, which is readily available in most computer algebra systems and numerical software packages. The use of this function provides much higher accuracy of the estimation comparing to known relations containing the logarithm, which is just the leading term of $W(x)$ at large $x$. Our result ensures accuracies sufficient for practical applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.