Papers
Topics
Authors
Recent
Search
2000 character limit reached

Canonical quantization on the half-line and in an interval based upon a new concept for the momentum in a space with boundaries

Published 2 Mar 2021 in quant-ph, math-ph, and math.MP | (2103.01715v1)

Abstract: For a particle moving on a half-line or in an interval the operator $\hat p = - i \partial_x$ is not self-adjoint and thus does not qualify as the physical momentum. Consequently canonical quantization based on $\hat p$ fails. Based upon a new concept for a self-adjoint momentum operator $\hat p_R$, we show that canonical quantization can indeed be implemented on the half-line and on an interval. Both the Hamiltonian $\hat H$ and the momentum operator $\hat p_R$ are endowed with self-adjoint extension parameters that characterize the corresponding domains $D(\hat H)$ and $D(\hat p_R)$ in the Hilbert space. When one replaces Poisson brackets by commutators, one obtains meaningful results only if the corresponding operator domains are properly taken into account. The new concept for the momentum is used to describe the results of momentum measurements of a quantum mechanical particle that is reflected at impenetrable boundaries, either at the end of the half-line or at the two ends of an interval.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 0 likes about this paper.