Papers
Topics
Authors
Recent
2000 character limit reached

Translation surfaces and periods of meromorphic differentials (2103.01580v4)

Published 2 Mar 2021 in math.GT and math.CV

Abstract: Let $S$ be an oriented surface of genus $g$ and $n$ punctures. The periods of any meromorphic differential on $S$, with respect to a choice of complex structure, determine a representation $\chi:\Gamma_{g,n} \to\mathbb C$ where $\Gamma_{g,n}$ is the first homology group of $S$. We characterize the representations that thus arise, that is, lie in the image of the period map $\textsf{Per}:\Omega\mathcal{M}{g,n}\to \textsf{Hom}(\Gamma{g,n},\mathbb{C})$. This generalizes a classical result of Haupt in the holomorphic case. Moreover, we determine the image of this period map when restricted to any stratum of meromorphic differentials, having prescribed orders of zeros and poles. Our proofs are geometric, as they aim to construct a translation structure on $S$ with the prescribed holonomy $\chi$. Along the way, we describe a connection with the Hurwitz problem concerning the existence of branched covers with prescribed branching data.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.