Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Finite convergence of sum-of-squares hierarchies for the stability number of a graph (2103.01574v3)

Published 2 Mar 2021 in math.OC

Abstract: We investigate a hierarchy of semidefinite bounds $\vartheta{(r)}(G)$ for the stability number $\alpha(G)$ of a graph $G$, based on its copositive programming formulation and introduced by de Klerk and Pasechnik [{\em SIAM J. Optim.} 12 (2002), pp.875--892], who conjectured convergence to $\alpha(G)$ in $r=\alpha(G)-1$ steps. Even the weaker conjecture claiming finite convergence is still open. We establish links between this hierarchy and sum-of-squares hierarchies based on the Motzkin-Straus formulation of $\alpha(G)$, which we use to show finite convergence when $G$ is acritical, i.e., when $\alpha(G\setminus e)=\alpha(G)$ for all edges $e$ of $G$. This relies, in particular, on understanding the structure of the minimizers of the Motzkin-Straus formulation and showing that their number is finite precisely when $G$ is acritical. Moreover we show that these results hold in the general setting of the weighted stable set problem for graphs equipped with positive node weights. In addition, as a byproduct we show that deciding whether a standard quadratic program has finitely many minimizers does not admit a polynomial-time algorithm unless P=NP.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.