Finite convergence of sum-of-squares hierarchies for the stability number of a graph (2103.01574v3)
Abstract: We investigate a hierarchy of semidefinite bounds $\vartheta{(r)}(G)$ for the stability number $\alpha(G)$ of a graph $G$, based on its copositive programming formulation and introduced by de Klerk and Pasechnik [{\em SIAM J. Optim.} 12 (2002), pp.875--892], who conjectured convergence to $\alpha(G)$ in $r=\alpha(G)-1$ steps. Even the weaker conjecture claiming finite convergence is still open. We establish links between this hierarchy and sum-of-squares hierarchies based on the Motzkin-Straus formulation of $\alpha(G)$, which we use to show finite convergence when $G$ is acritical, i.e., when $\alpha(G\setminus e)=\alpha(G)$ for all edges $e$ of $G$. This relies, in particular, on understanding the structure of the minimizers of the Motzkin-Straus formulation and showing that their number is finite precisely when $G$ is acritical. Moreover we show that these results hold in the general setting of the weighted stable set problem for graphs equipped with positive node weights. In addition, as a byproduct we show that deciding whether a standard quadratic program has finitely many minimizers does not admit a polynomial-time algorithm unless P=NP.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.