Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Konig-Egervary Square-Stable Graphs (0908.1313v3)

Published 10 Aug 2009 in math.CO and cs.DM

Abstract: The stability number of a graph G, denoted by alpha(G), is the cardinality of a maximum stable set, and mu(G) is the cardinality of a maximum matching in G. If alpha(G)+mu(G) equals its order, then G is a Konig-Egervary graph. In this paper we deal with square-stable graphs, i.e., the graphs G enjoying the equality alpha(G)=alpha(G{2}), where G{2} denotes the second power of G. In particular, we show that a Konig-Egervary graph is square-stable if and only if it has a perfect matching consisting of pendant edges, and in consequence, we deduce that well-covered trees are exactly the square-stable trees.

Summary

We haven't generated a summary for this paper yet.