Papers
Topics
Authors
Recent
2000 character limit reached

Secure Bilevel Asynchronous Vertical Federated Learning with Backward Updating

Published 1 Mar 2021 in cs.LG | (2103.00958v1)

Abstract: Vertical federated learning (VFL) attracts increasing attention due to the emerging demands of multi-party collaborative modeling and concerns of privacy leakage. In the real VFL applications, usually only one or partial parties hold labels, which makes it challenging for all parties to collaboratively learn the model without privacy leakage. Meanwhile, most existing VFL algorithms are trapped in the synchronous computations, which leads to inefficiency in their real-world applications. To address these challenging problems, we propose a novel {\bf VF}L framework integrated with new {\bf b}ackward updating mechanism and {\bf b}ilevel asynchronous parallel architecture (VF{${\textbf{B}}2$}), under which three new algorithms, including VF{${\textbf{B}}2$}-SGD, -SVRG, and -SAGA, are proposed. We derive the theoretical results of the convergence rates of these three algorithms under both strongly convex and nonconvex conditions. We also prove the security of VF{${\textbf{B}}2$} under semi-honest threat models. Extensive experiments on benchmark datasets demonstrate that our algorithms are efficient, scalable and lossless.

Citations (64)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.