Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Geometry of the symplectic Stiefel manifold endowed with the Euclidean metric (2103.00459v1)

Published 28 Feb 2021 in math.OC and math.SG

Abstract: The symplectic Stiefel manifold, denoted by $\mathrm{Sp}(2p,2n)$, is the set of linear symplectic maps between the standard symplectic spaces $\mathbb{R}{2p}$ and $\mathbb{R}{2n}$. When $p=n$, it reduces to the well-known set of $2n\times 2n$ symplectic matrices. We study the Riemannian geometry of this manifold viewed as a Riemannian submanifold of the Euclidean space $\mathbb{R}{2n\times 2p}$. The corresponding normal space and projections onto the tangent and normal spaces are investigated. Moreover, we consider optimization problems on the symplectic Stiefel manifold. We obtain the expression of the Riemannian gradient with respect to the Euclidean metric, which then used in optimization algorithms. Numerical experiments on the nearest symplectic matrix problem and the symplectic eigenvalue problem illustrate the effectiveness of Euclidean-based algorithms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.