Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Central Limit Theorem for Diffusion in Sparse Random Graphs

Published 28 Feb 2021 in math.PR and cs.DM | (2103.00357v2)

Abstract: We consider bootstrap percolation and diffusion in sparse random graphs with fixed degrees, constructed by configuration model. Every node has two states: it is either active or inactive. We assume that to each node is assigned a nonnegative (integer) threshold. The diffusion process is initiated by a subset of nodes with threshold zero which consists of initially activated nodes, whereas every other node is inactive. Subsequently, in each round, if an inactive node with threshold $\theta$ has at least $\theta$ of its neighbours activated, then it also becomes active and remains so forever. This is repeated until no more nodes become activated. The main result of this paper provides a central limit theorem for the final size of activated nodes. Namely, under suitable assumptions on the degree and threshold distributions, we show that the final size of activated nodes has asymptotically Gaussian fluctuations.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.