Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical Measures For Defining Curriculum Scoring Function (2103.00147v2)

Published 27 Feb 2021 in cs.LG

Abstract: Curriculum learning is a training strategy that sorts the training examples by some measure of their difficulty and gradually exposes them to the learner to improve the network performance. Motivated by our insights from implicit curriculum ordering, we first introduce a simple curriculum learning strategy that uses statistical measures such as standard deviation and entropy values to score the difficulty of data points for real image classification tasks. We empirically show its improvements in performance with convolutional and fully-connected neural networks on multiple real image datasets. We also propose and study the performance of a dynamic curriculum learning algorithm. Our dynamic curriculum algorithm tries to reduce the distance between the network weight and an optimal weight at any training step by greedily sampling examples with gradients that are directed towards the optimal weight. Further, we use our algorithms to discuss why curriculum learning is helpful.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Vinu Sankar Sadasivan (9 papers)
  2. Anirban Dasgupta (32 papers)
Citations (2)