Papers
Topics
Authors
Recent
Search
2000 character limit reached

An Optimal Deterministic Algorithm for Geodesic Farthest-Point Voronoi Diagrams in Simple Polygons

Published 26 Feb 2021 in cs.CG and cs.DS | (2103.00076v2)

Abstract: Given a set $S$ of $m$ point sites in a simple polygon $P$ of $n$ vertices, we consider the problem of computing the geodesic farthest-point Voronoi diagram for $S$ in $P$. It is known that the problem has an $\Omega(n+m\log m)$ time lower bound. Previously, a randomized algorithm was proposed [Barba, SoCG 2019] that can solve the problem in $O(n+m\log m)$ expected time. The previous best deterministic algorithms solve the problem in $O(n\log \log n+ m\log m)$ time [Oh, Barba, and Ahn, SoCG 2016] or in $O(n+m\log m+m\log2 n)$ time [Oh and Ahn, SoCG 2017]. In this paper, we present a deterministic algorithm of $O(n+m\log m)$ time, which is optimal. This answers an open question posed by Mitchell in the Handbook of Computational Geometry two decades ago.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.