Papers
Topics
Authors
Recent
Search
2000 character limit reached

A canonical transformation to eliminate resonant perturbations I

Published 26 Feb 2021 in nlin.CD and astro-ph.EP | (2103.00013v2)

Abstract: We study dynamical systems which admit action-angle variables at leading order which are subject to nearly resonant perturbations. If the frequencies characterizing the unperturbed system are not in resonance, the long-term dynamical evolution may be integrated by orbit-averaging over the high-frequency angles, thereby evolving the orbit-averaged effect of the perturbations. It is well known that such integrators may be constructed via a canonical transformation, which eliminates the high frequency variables from the orbit-averaged quantities. An example of this algorithm in celestial mechanics is the von Zeipel transformation. However if the perturbations are inside or close to a resonance, i.e. the frequencies of the unperturbed system are commensurate, these canonical transformations are subject to divergences. We introduce a canonical transformation which eliminates the high frequency phase variables in the Hamiltonian without encountering divergences. This leads to a well-behaved symplectic integrator. We demonstrate the algorithm through two examples: a resonantly perturbed harmonic oscillator and the gravitational three-body problem in mean motion resonance.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.