Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Texture-aware Video Frame Interpolation (2102.13520v1)

Published 26 Feb 2021 in eess.IV and cs.CV

Abstract: Temporal interpolation has the potential to be a powerful tool for video compression. Existing methods for frame interpolation do not discriminate between video textures and generally invoke a single general model capable of interpolating a wide range of video content. However, past work on video texture analysis and synthesis has shown that different textures exhibit vastly different motion characteristics and they can be divided into three classes (static, dynamic continuous and dynamic discrete). In this work, we study the impact of video textures on video frame interpolation, and propose a novel framework where, given an interpolation algorithm, separate models are trained on different textures. Our study shows that video texture has significant impact on the performance of frame interpolation models and it is beneficial to have separate models specifically adapted to these texture classes, instead of training a single model that tries to learn generic motion. Our results demonstrate that models fine-tuned using our framework achieve, on average, a 0.3dB gain in PSNR on the test set used.

Citations (5)

Summary

We haven't generated a summary for this paper yet.