Papers
Topics
Authors
Recent
2000 character limit reached

Optimising the mitigation of epidemic spreading through targeted adoption of contact tracing apps

Published 25 Feb 2021 in physics.soc-ph, cs.SI, and physics.bio-ph | (2102.13013v1)

Abstract: The ongoing COVID-19 pandemic is the first epidemic in human history in which digital contact-tracing has been deployed at a global scale. Tracking and quarantining all the contacts of individuals who test positive to a virus can help slowing-down an epidemic, but the impact of contact-tracing is severely limited by the generally low adoption of contact-tracing apps in the population. We derive here an analytical expression for the effectiveness of contact-tracing app installation strategies in a SIR model on a given contact graph. We propose a decentralised heuristic to improve the effectiveness of contact tracing under fixed adoption rates, which targets a set of individuals to install contact-tracing apps, and can be easily implemented. Simulations on a large number of real-world contact networks confirm that this heuristic represents a feasible alternative to the current state of the art.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.