2000 character limit reached
Optimal steering to invariant distributions for networks flows
Published 25 Feb 2021 in eess.SY, cs.SY, math.OC, and math.PR | (2102.12628v1)
Abstract: We derive novel results on the ergodic theory of irreducible, aperiodic Markov chains. We show how to optimally steer the network flow to a stationary distribution over a finite or infinite time horizon. Optimality is with respect to an entropic distance between distributions on feasible paths. When the prior is reversible, it shown that solutions to this discrete time and space steering problem are reversible as well. A notion of temperature is defined for Boltzmann distributions on networks, and problems analogous to cooling (in this case, for evolutions in discrete space and time) are discussed.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.