Papers
Topics
Authors
Recent
2000 character limit reached

Individualized Context-Aware Tensor Factorization for Online Games Predictions

Published 22 Feb 2021 in cs.AI | (2102.11352v1)

Abstract: Individual behavior and decisions are substantially influenced by their contexts, such as location, environment, and time. Changes along these dimensions can be readily observed in Multiplayer Online Battle Arena games (MOBA), where players face different in-game settings for each match and are subject to frequent game patches. Existing methods utilizing contextual information generalize the effect of a context over the entire population, but contextual information tailored to each individual can be more effective. To achieve this, we present the Neural Individualized Context-aware Embeddings (NICE) model for predicting user performance and game outcomes. Our proposed method identifies individual behavioral differences in different contexts by learning latent representations of users and contexts through non-negative tensor factorization. Using a dataset from the MOBA game League of Legends, we demonstrate that our model substantially improves the prediction of winning outcome, individual user performance, and user engagement.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.