Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Sign-regularized Multi-task Learning (2102.11191v1)

Published 22 Feb 2021 in cs.LG

Abstract: Multi-task learning is a framework that enforces different learning tasks to share their knowledge to improve their generalization performance. It is a hot and active domain that strives to handle several core issues; particularly, which tasks are correlated and similar, and how to share the knowledge among correlated tasks. Existing works usually do not distinguish the polarity and magnitude of feature weights and commonly rely on linear correlation, due to three major technical challenges in: 1) optimizing the models that regularize feature weight polarity, 2) deciding whether to regularize sign or magnitude, 3) identifying which tasks should share their sign and/or magnitude patterns. To address them, this paper proposes a new multi-task learning framework that can regularize feature weight signs across tasks. We innovatively formulate it as a biconvex inequality constrained optimization with slacks and propose a new efficient algorithm for the optimization with theoretical guarantees on generalization performance and convergence. Extensive experiments on multiple datasets demonstrate the proposed methods' effectiveness, efficiency, and reasonableness of the regularized feature weighted patterns.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.