Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Higher Siegel theta lifts on Lorentzian lattices, harmonic Maass forms, and Eichler-Selberg type relations (2102.10949v5)

Published 22 Feb 2021 in math.NT

Abstract: We investigate so-called "higher" Siegel theta lifts on Lorentzian lattices in the spirit of Bruinier-Ehlen-Yang and Bruinier-Schwagenscheidt. We give a series representation of the lift in terms of Gauss hypergeometric functions, and evaluate the lift as the constant term of a Fourier series involving the Rankin-Cohen bracket of harmonic Maass forms and theta functions. Using the higher Siegel lifts, we obtain a vector-valued analogue of Mertens' result stating that the Rankin--Cohen bracket of the holomorphic part of a harmonic Maass form of weight $\frac{3}{2}$ and a unary theta function, plus a certain form, is a holomorphic modular form. As an application of these results, we offer a novel proof of a conjecture of Cohen which was originally proved by Mertens, as well as a novel proof of a theorem of Ahlgren and Kim, each in the scalar-valued case.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube