Papers
Topics
Authors
Recent
2000 character limit reached

Shapley values for feature selection: The good, the bad, and the axioms

Published 22 Feb 2021 in cs.LG, cs.AI, and stat.ML | (2102.10936v1)

Abstract: The Shapley value has become popular in the Explainable AI (XAI) literature, thanks, to a large extent, to a solid theoretical foundation, including four "favourable and fair" axioms for attribution in transferable utility games. The Shapley value is provably the only solution concept satisfying these axioms. In this paper, we introduce the Shapley value and draw attention to its recent uses as a feature selection tool. We call into question this use of the Shapley value, using simple, abstract "toy" counterexamples to illustrate that the axioms may work against the goals of feature selection. From this, we develop a number of insights that are then investigated in concrete simulation settings, with a variety of Shapley value formulations, including SHapley Additive exPlanations (SHAP) and Shapley Additive Global importancE (SAGE).

Citations (157)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.