Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Transport of Information

Published 22 Feb 2021 in econ.GN, math.OC, q-fin.EC, and stat.OT | (2102.10909v4)

Abstract: We study the general problem of Bayesian persuasion (optimal information design) with continuous actions and continuous state space in arbitrary dimensions. First, we show that with a finite signal space, the optimal information design is always given by a partition. Second, we take the limit of an infinite signal space and characterize the solution in terms of a Monge-Kantorovich optimal transport problem with an endogenous information transport cost. We use our novel approach to: 1. Derive necessary and sufficient conditions for optimality based on Bregman divergences for non-convex functions. 2. Compute exact bounds for the Hausdorff dimension of the support of an optimal policy. 3. Derive a non-linear, second-order partial differential equation whose solutions correspond to regular optimal policies. We illustrate the power of our approach by providing explicit solutions to several non-linear, multidimensional Bayesian persuasion problems.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.