Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Partition and Analytic Rank are Equivalent over Large Fields (2102.10509v5)

Published 21 Feb 2021 in math.CO, cs.CC, and math.AG

Abstract: We prove that the partition rank and the analytic rank of tensors are equal up to a constant, over finite fields of any characteristic and any large enough cardinality depending on the analytic rank. Moreover, we show that a plausible improvement of our field cardinality requirement would imply that the ranks are equal up to 1+o(1) in the exponent over every finite field. At the core of the proof is a technique for lifting decompositions of multilinear polynomials in an open subset of an algebraic variety, and a technique for finding a large subvariety that retains all rational points such that at least one of these points satisfies a finite-field analogue of genericity with respect to it. Proving the equivalence between these two ranks, ideally over fixed finite fields, is a central question in additive combinatorics, and was reiterated by multiple authors. As a corollary we prove, allowing the field to depend on the value of the norm, the Polynomial Gowers Inverse Conjecture in the d vs. d-1 case.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.