Papers
Topics
Authors
Recent
2000 character limit reached

CheXseg: Combining Expert Annotations with DNN-generated Saliency Maps for X-ray Segmentation

Published 21 Feb 2021 in cs.CV, cs.AI, and cs.LG | (2102.10484v2)

Abstract: Medical image segmentation models are typically supervised by expert annotations at the pixel-level, which can be expensive to acquire. In this work, we propose a method that combines the high quality of pixel-level expert annotations with the scale of coarse DNN-generated saliency maps for training multi-label semantic segmentation models. We demonstrate the application of our semi-supervised method, which we call CheXseg, on multi-label chest X-ray interpretation. We find that CheXseg improves upon the performance (mIoU) of fully-supervised methods that use only pixel-level expert annotations by 9.7% and weakly-supervised methods that use only DNN-generated saliency maps by 73.1%. Our best method is able to match radiologist agreement on three out of ten pathologies and reduces the overall performance gap by 57.2% as compared to weakly-supervised methods.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.