Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speech enhancement with weakly labelled data from AudioSet (2102.09971v1)

Published 19 Feb 2021 in cs.SD and eess.AS

Abstract: Speech enhancement is a task to improve the intelligibility and perceptual quality of degraded speech signal. Recently, neural networks based methods have been applied to speech enhancement. However, many neural network based methods require noisy and clean speech pairs for training. We propose a speech enhancement framework that can be trained with large-scale weakly labelled AudioSet dataset. Weakly labelled data only contain audio tags of audio clips, but not the onset or offset times of speech. We first apply pretrained audio neural networks (PANNs) to detect anchor segments that contain speech or sound events in audio clips. Then, we randomly mix two detected anchor segments containing speech and sound events as a mixture, and build a conditional source separation network using PANNs predictions as soft conditions for speech enhancement. In inference, we input a noisy speech signal with the one-hot encoding of "Speech" as a condition to the trained system to predict enhanced speech. Our system achieves a PESQ of 2.28 and an SSNR of 8.75 dB on the VoiceBank-DEMAND dataset, outperforming the previous SEGAN system of 2.16 and 7.73 dB respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Qiuqiang Kong (86 papers)
  2. Haohe Liu (59 papers)
  3. Xingjian Du (25 papers)
  4. Li Chen (590 papers)
  5. Rui Xia (53 papers)
  6. Yuxuan Wang (239 papers)
Citations (17)