Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel algorithms for power circuits and the word problem of the Baumslag group (2102.09921v4)

Published 19 Feb 2021 in cs.CC and math.GR

Abstract: Power circuits have been introduced in 2012 by Myasnikov, Ushakov and Won as a data structure for non-elementarily compressed integers supporting the arithmetic operations addition and $(x,y) \mapsto x\cdot 2y$. The same authors applied power circuits to give a polynomial-time solution to the word problem of the Baumslag group, which has a non-elementary Dehn function. In this work, we examine power circuits and the word problem of the Baumslag group under parallel complexity aspects. In particular, we establish that the word problem of the Baumslag group can be solved in NC - even though one of the essential steps is to compare two integers given by power circuits and this, in general, is shown to be P-complete. The key observation is that the depth of the occurring power circuits is logarithmic and such power circuits can be compared in NC.

Citations (2)

Summary

We haven't generated a summary for this paper yet.