Evaluating Matrix Circuits
Abstract: The circuit evaluation problem (also known as the compressed word problem) for finitely generated linear groups is studied. The best upper bound for this problem is $\mathsf{coRP}$, which is shown by a reduction to polynomial identity testing. Conversely, the compressed word problem for the linear group $\mathsf{SL}_3(\mathbb{Z})$ is equivalent to polynomial identity testing. In the paper, it is shown that the compressed word problem for every finitely generated nilpotent group is in $\mathsf{DET} \subseteq \mathsf{NC}2$. Within the larger class of polycyclic groups we find examples where the compressed word problem is at least as hard as polynomial identity testing for skew arithmetic circuits.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.