Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Power Circuits, Exponential Algebra, and Time Complexity (1006.2570v1)

Published 13 Jun 2010 in math.GR and cs.CC

Abstract: Motivated by algorithmic problems from combinatorial group theory we study computational properties of integers equipped with binary operations +, -, z = x 2y, z = x 2{-y} (the former two are partial) and predicates < and =. Notice that in this case very large numbers, which are obtained as n towers of exponentiation in the base 2 can be realized as n applications of the operation x2y, so working with such numbers given in the usual binary expansions requires super exponential space. We define a new compressed representation for integers by power circuits (a particular type of straight-line programs) which is unique and easily computable, and show that the operations above can be performed in polynomial time if the numbers are presented by power circuits. We mention several applications of this technique to algorithmic problems, in particular, we prove that the quantifier-free theories of various exponential algebras are decidable in polynomial time, as well as the word problems in some "hard to crack" one-relator groups.

Citations (19)

Summary

We haven't generated a summary for this paper yet.