Papers
Topics
Authors
Recent
2000 character limit reached

Birkhoff normal forms for Hamiltonian PDEs in their energy space (2102.09852v2)

Published 19 Feb 2021 in math.AP and math.DS

Abstract: We study the long time behavior of small solutions of semi-linear dispersive Hamiltonian partial differential equations on confined domains. Provided that the system enjoys a new non-resonance condition and a strong enough energy estimate, we prove that its low super-actions are almost preserved for very long times. Roughly speaking, it means that, to exchange energy, modes have to oscillate at the same frequency. Contrary to the previous existing results, we do not require the solutions to be especially smooth. They only have to live in the energy space. We apply our result to nonlinear Klein-Gordon equations in dimension d = 1 and nonlinear Schr{\"o}dinger equations in dimension d $\le$ 2.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.