Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Applications of deep learning in traffic congestion detection, prediction and alleviation: A survey (2102.09759v2)

Published 19 Feb 2021 in cs.LG and stat.ML

Abstract: Detecting, predicting, and alleviating traffic congestion are targeted at improving the level of service of the transportation network. With increasing access to larger datasets of higher resolution, the relevance of deep learning for such tasks is increasing. Several comprehensive survey papers in recent years have summarised the deep learning applications in the transportation domain. However, the system dynamics of the transportation network vary greatly between the non-congested state and the congested state -- thereby necessitating the need for a clear understanding of the challenges specific to congestion prediction. In this survey, we present the current state of deep learning applications in the tasks related to detection, prediction, and alleviation of congestion. Recurring and non-recurring congestion are discussed separately. Our survey leads us to uncover inherent challenges and gaps in the current state of research. Finally, we present some suggestions for future research directions as answers to the identified challenges.

Citations (77)

Summary

We haven't generated a summary for this paper yet.