Papers
Topics
Authors
Recent
Search
2000 character limit reached

A General Framework for the Practical Disintegration of PAC-Bayesian Bounds

Published 17 Feb 2021 in stat.ML and cs.LG | (2102.08649v3)

Abstract: PAC-Bayesian bounds are known to be tight and informative when studying the generalization ability of randomized classifiers. However, they require a loose and costly derandomization step when applied to some families of deterministic models such as neural networks. As an alternative to this step, we introduce new PAC-Bayesian generalization bounds that have the originality to provide disintegrated bounds, i.e., they give guarantees over one single hypothesis instead of the usual averaged analysis. Our bounds are easily optimizable and can be used to design learning algorithms. We illustrate this behavior on neural networks, and we show a significant practical improvement over the state-of-the-art framework.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.