Papers
Topics
Authors
Recent
Search
2000 character limit reached

Topological Deep Learning: Classification Neural Networks

Published 16 Feb 2021 in cs.LG, math.AT, and stat.ML | (2102.08354v1)

Abstract: Topological deep learning is a formalism that is aimed at introducing topological language to deep learning for the purpose of utilizing the minimal mathematical structures to formalize problems that arise in a generic deep learning problem. This is the first of a sequence of articles with the purpose of introducing and studying this formalism. In this article, we define and study the classification problem in machine learning in a topological setting. Using this topological framework, we show when the classification problem is possible or not possible in the context of neural networks. Finally, we demonstrate how our topological setting immediately illuminates aspects of this problem that are not as readily apparent using traditional tools.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.