Papers
Topics
Authors
Recent
2000 character limit reached

An Information-Theoretic Justification for Model Pruning

Published 16 Feb 2021 in cs.LG, cs.IT, eess.SP, math.IT, and stat.ML | (2102.08329v4)

Abstract: We study the neural network (NN) compression problem, viewing the tension between the compression ratio and NN performance through the lens of rate-distortion theory. We choose a distortion metric that reflects the effect of NN compression on the model output and derive the tradeoff between rate (compression) and distortion. In addition to characterizing theoretical limits of NN compression, this formulation shows that \emph{pruning}, implicitly or explicitly, must be a part of a good compression algorithm. This observation bridges a gap between parts of the literature pertaining to NN and data compression, respectively, providing insight into the empirical success of model pruning. Finally, we propose a novel pruning strategy derived from our information-theoretic formulation and show that it outperforms the relevant baselines on CIFAR-10 and ImageNet datasets.

Citations (32)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.