Scheduling with Machine Conflicts
Abstract: We study the scheduling problem of makespan minimization while taking machine conflicts into account. Machine conflicts arise in various settings, e.g., shared resources for pre- and post-processing of tasks or spatial restrictions. In this context, each job has a blocking time before and after its processing time, i.e., three parameters. We seek for conflict-free schedules in which the blocking times of no two jobs intersect on conflicting machines. Given a set of jobs, a set of machines, and a graph representing machine conflicts, the problem SchedulingWithMachineConflicts (SMC), asks for a conflict-free schedule of minimum makespan. We show that, unless $\textrm{P}=\textrm{NP}$, SMC on $m$ machines does not allow for a $\mathcal{O}(m{1-\varepsilon})$-approximation algorithm for any $\varepsilon>0$, even in the case of identical jobs and every choice of fixed positive parameters, including the unit case. Complementary, we provide approximation algorithms when a suitable collection of independent sets is given. Finally, we present polynomial time algorithms to solve the problem for the case of unit jobs on special graph classes. Most prominently, we solve it for bipartite graphs by using structural insights for conflict graphs of star forests.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.