Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Just Noticeable Difference for Deep Machine Vision (2102.08168v2)

Published 16 Feb 2021 in cs.CV and eess.IV

Abstract: As an important perceptual characteristic of the Human Visual System (HVS), the Just Noticeable Difference (JND) has been studied for decades with image and video processing (e.g., perceptual visual signal compression). However, there is little exploration on the existence of JND for the Deep Machine Vision (DMV), although the DMV has made great strides in many machine vision tasks. In this paper, we take an initial attempt, and demonstrate that the DMV has the JND, termed as the DMV-JND. We then propose a JND model for the image classification task in the DMV. It has been discovered that the DMV can tolerate distorted images with average PSNR of only 9.56dB (the lower the better), by generating JND via unsupervised learning with the proposed DMV-JND-NET. In particular, a semantic-guided redundancy assessment strategy is designed to restrain the magnitude and spatial distribution of the DMV-JND. Experimental results on image classification demonstrate that we successfully find the JND for deep machine vision. Our DMV-JND facilitates a possible direction for DMV-oriented image and video compression, watermarking, quality assessment, deep neural network security, and so on.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Jian Jin (31 papers)
  2. Xingxing Zhang (65 papers)
  3. Xin Fu (49 papers)
  4. Huan Zhang (171 papers)
  5. Weisi Lin (118 papers)
  6. Jian Lou (46 papers)
  7. Yao Zhao (272 papers)
Citations (26)