Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Through-the-Wall Radar under Electromagnetic Complex Wall: A Deep Learning Approach (2102.07990v2)

Published 16 Feb 2021 in eess.SP, cs.SD, and eess.AS

Abstract: This paper employed deep learning to do two-dimensional, multi-target locating in Through-the-Wall Radar under conditions where the wall is treated as a complex electromagnetic medium. We made five assumptions about the wall and two about the number of targets. There are two target modes available: single target and double targets. The wall scenarios include a homogeneous wall, a wall with an air gap, an inhomogeneous wall, an anisotropic wall, and an inhomogeneous-anisotropic wall. Target locating is accomplished through the use of a deep neural network technique. We constructed a dataset using the Python FDTD module and then modeled it using deep learning. Assuming the wall is a complex electromagnetic medium, we achieved 97.7% accuracy for single-target 2D locating and 94.1% accuracy for two-target locating. Additionally, we noticed a loss of 10% to 20% inaccuracy when noise was added at low SNRs, although this decrease dropped to less than 10% at high SNRs.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.