Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anomalous Sound Detection with Machine Learning: A Systematic Review (2102.07820v1)

Published 15 Feb 2021 in cs.SD, cs.AI, cs.LG, and eess.SP

Abstract: Anomalous sound detection (ASD) is the task of identifying whether the sound emitted from an object is normal or anomalous. In some cases, early detection of this anomaly can prevent several problems. This article presents a Systematic Review (SR) about studies related to Anamolous Sound Detection using Machine Learning (ML) techniques. This SR was conducted through a selection of 31 (accepted studies) studies published in journals and conferences between 2010 and 2020. The state of the art was addressed, collecting data sets, methods for extracting features in audio, ML models, and evaluation methods used for ASD. The results showed that the ToyADMOS, MIMII, and Mivia datasets, the Mel-frequency cepstral coefficients (MFCC) method for extracting features, the Autoencoder (AE) and Convolutional Neural Network (CNN) models of ML, the AUC and F1-score evaluation methods were most cited.

Citations (23)

Summary

We haven't generated a summary for this paper yet.