Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Asymptotic normality of degree counts in a general preferential attachment model (2102.07570v2)

Published 15 Feb 2021 in math.PR

Abstract: We consider the preferential attachment model. This is a growing random graph such that at each step a new vertex is added and forms $m$ connections. The neighbors of the new vertex are chosen at random with probability proportional to their degree. It is well known that the proportion of nodes with a given degree at step $n$ converges to a constant as $n\rightarrow\infty$. The goal of this paper is to investigate the asymptotic distribution of the fluctuations around this limiting value. We prove a central limit theorem for the joint distribution of all degree counts. In particular, we give an explicit expression for the asymptotic covariance. This expression is rather complex, so we compute it numerically for various parameter choices. We also use numerical simulations to argue that the convergence is quite fast. The proof relies on the careful construction of an appropriate martingale.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube