Papers
Topics
Authors
Recent
2000 character limit reached

Foundations of Multistage Stochastic Programming (2102.07464v2)

Published 15 Feb 2021 in math.OC

Abstract: Multistage stochastic optimization problems are oftentimes formulated informally in a pathwise way. These are correct in a discrete setting and suitable when addressing computational challenges, for example. But the pathwise problem statement does not allow an analysis with mathematical rigor and is therefore not appropriate. This paper addresses the foundations. We provide a novel formulation of multistage stochastic optimization problems by involving adequate stochastic processes as control. The fundamental contribution is a proof that there exist measurable versions of intermediate value functions. Our proof builds on the Kolmogorov continuity theorem. A verification theorem is given in addition, and it is demonstrated that all traditional problem specifications can be stated in the novel setting with mathematical rigor. Further, we provide dynamic equations for the general problem, which is developed for various problem classes. The problem classes covered here include Markov decision processes, reinforcement learning and stochastic dual dynamic programming.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.