Papers
Topics
Authors
Recent
2000 character limit reached

On training targets for noise-robust voice activity detection

Published 15 Feb 2021 in eess.AS | (2102.07445v2)

Abstract: The task of voice activity detection (VAD) is an often required module in various speech processing, analysis and classification tasks. While state-of-the-art neural network based VADs can achieve great results, they often exceed computational budgets and real-time operating requirements. In this work, we propose a computationally efficient real-time VAD network that achieves state-of-the-art results on several public real recording datasets. We investigate different training targets for the VAD and show that using the segmental voice-to-noise ratio (VNR) is a better and more noise-robust training target than the clean speech level based VAD. We also show that multi-target training improves the performance further.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.